2019
DOI: 10.1155/2019/5156416
|View full text |Cite
|
Sign up to set email alerts
|

Improving Accuracy of Lung Nodule Classification Using Deep Learning with Focal Loss

Abstract: Early detection and classification of pulmonary nodules using computer-aided diagnosis (CAD) systems is useful in reducing mortality rates of lung cancer. In this paper, we propose a new deep learning method to improve classification accuracy of pulmonary nodules in computed tomography (CT) scans. Our method uses a novel 15-layer 2D deep convolutional neural network architecture for automatic feature extraction and classification of pulmonary candidates as nodule or nonnodule. Focal loss function is then appli… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
46
0
4

Year Published

2019
2019
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 130 publications
(55 citation statements)
references
References 21 publications
1
46
0
4
Order By: Relevance
“…Para validar sus resultados [18] utiliza sensibilidad, especificidad, precisión y curva ROC. En cambio [16,17,19] calculan precisión, especificidad y sensibilidad. Por otra parte [10] calcula sensibilidad, especificidad y curva ROC.…”
Section: Validación De Resultadosunclassified
See 3 more Smart Citations
“…Para validar sus resultados [18] utiliza sensibilidad, especificidad, precisión y curva ROC. En cambio [16,17,19] calculan precisión, especificidad y sensibilidad. Por otra parte [10] calcula sensibilidad, especificidad y curva ROC.…”
Section: Validación De Resultadosunclassified
“…Son et al [19] proponen un método de aprendizaje profundo para mejorar la precisión de clasificación de nódulos pulmonares en la TC. Utilizan una red neuronal convolucional profunda 2D de 15 capas para la extracción y clasificación de nódulos y no nódulos.…”
Section: Revisión De La Literaturaunclassified
See 2 more Smart Citations
“…Through the results, we presented some of the most fundamental and recent applications in the medical health system and also identified some of the challenges and opportunities of Deep Learning techniques. 26 Preprocessing methods such as wavelet denoisation were used to extract the precise contours of different tissues such as skull, cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) in five sets of images of the head MRI. Just as in (E6), a good precision was identified in the DL model, also highlighting the reduction of processing time compared to manual and semi-automatic segmentation.…”
Section: Multimodal Imaging 2019mentioning
confidence: 99%