Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The analysis conducted herein has shown that the efficiency of smoke precipitation can be improved by additionally making smoke particles interact with ultrasonic (US) oscillations. Because the efficiency of US coagulation lowers when small particles assemble into agglomerates, the authors of this work have suggested studying how smoke particles interact with complex sound fields. The fields are formed by at least two US transducers which work at a similar frequency or on frequencies with small deviations. To form these fields, high-efficiency bending wave ultrasonic transducers have been developed and suggested. It has been shown that a complex ultrasonic field significantly enhances smoke precipitation. The field in question was constructed by simultaneously emitting 22 kHz US oscillations with a sound pressure level no lower than 140 dB at a distance of 1 m. The difference in US oscillations’ frequencies was no more than 300 Hz. Due to the effect of multi-frequency ultrasonic oscillations induced in the experimental smoke chamber, it was possible to provide a transmissivity value of 0.8 at a distance of 1 m from the transducers and 0.9 at a distance of 2 m. Thus, the uniform visibility improvement and complete suppression of incoming smoke was achieved. At the same time, the dual-frequency effect does not require an increase in ultrasonic energy for smoke due to the agglomeration of small particles under the influence of high-frequency ultrasonic vibrations and the further aggregation of the formed agglomerates by creating conditions for the additional rotational movement of the agglomerates due to low-frequency vibrations.
The analysis conducted herein has shown that the efficiency of smoke precipitation can be improved by additionally making smoke particles interact with ultrasonic (US) oscillations. Because the efficiency of US coagulation lowers when small particles assemble into agglomerates, the authors of this work have suggested studying how smoke particles interact with complex sound fields. The fields are formed by at least two US transducers which work at a similar frequency or on frequencies with small deviations. To form these fields, high-efficiency bending wave ultrasonic transducers have been developed and suggested. It has been shown that a complex ultrasonic field significantly enhances smoke precipitation. The field in question was constructed by simultaneously emitting 22 kHz US oscillations with a sound pressure level no lower than 140 dB at a distance of 1 m. The difference in US oscillations’ frequencies was no more than 300 Hz. Due to the effect of multi-frequency ultrasonic oscillations induced in the experimental smoke chamber, it was possible to provide a transmissivity value of 0.8 at a distance of 1 m from the transducers and 0.9 at a distance of 2 m. Thus, the uniform visibility improvement and complete suppression of incoming smoke was achieved. At the same time, the dual-frequency effect does not require an increase in ultrasonic energy for smoke due to the agglomeration of small particles under the influence of high-frequency ultrasonic vibrations and the further aggregation of the formed agglomerates by creating conditions for the additional rotational movement of the agglomerates due to low-frequency vibrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.