Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Design and development of new drug molecules are essential for the survival of human society. New drugs are designed for therapeutic purposes to combat new diseases. Besides treating new diseases, new drug development is also needed to treat pre‐existing diseases more effectively and reduce the existing drugs' side effects. The design of drugs involves several steps, from the discovery of the drug molecule to its commercialization in the market. One of the most critical steps in drug design is to find the molecular interactions between the target (infected) molecule and the drug molecule. Several complex chemical equations need to be solved to determine the molecular interactions. In the late 20th Century, the advancement of computational technologies has made the solution of chemical equations relatively easier and faster. Moreover, the design of drug molecules involves multi‐criteria optimization. Classical computational methodologies have been used for drug design since the end of the 20th Century. However, nowadays, more advanced computational methodologies are inevitable in designing drugs for new diseases and drugs with fewer side effects. In this context, the quantum computing paradigm has proved beneficial in drug design due to its advanced computational capabilities. This paper presents a state‐of‐the‐art comprehensive review of the quantum computing‐based methodologies involved in drug design. A comparative study is made about the different quantum‐aided drug design methods, stating each methodology's merits and demerits. The review work presented in this manuscript will help new researchers assess the present state‐of‐the‐art concept of quantum‐based drug design.This article is categorized under: Technologies > Structure Discovery and Clustering Technologies > Computational Intelligence Application Areas > Health Care
Design and development of new drug molecules are essential for the survival of human society. New drugs are designed for therapeutic purposes to combat new diseases. Besides treating new diseases, new drug development is also needed to treat pre‐existing diseases more effectively and reduce the existing drugs' side effects. The design of drugs involves several steps, from the discovery of the drug molecule to its commercialization in the market. One of the most critical steps in drug design is to find the molecular interactions between the target (infected) molecule and the drug molecule. Several complex chemical equations need to be solved to determine the molecular interactions. In the late 20th Century, the advancement of computational technologies has made the solution of chemical equations relatively easier and faster. Moreover, the design of drug molecules involves multi‐criteria optimization. Classical computational methodologies have been used for drug design since the end of the 20th Century. However, nowadays, more advanced computational methodologies are inevitable in designing drugs for new diseases and drugs with fewer side effects. In this context, the quantum computing paradigm has proved beneficial in drug design due to its advanced computational capabilities. This paper presents a state‐of‐the‐art comprehensive review of the quantum computing‐based methodologies involved in drug design. A comparative study is made about the different quantum‐aided drug design methods, stating each methodology's merits and demerits. The review work presented in this manuscript will help new researchers assess the present state‐of‐the‐art concept of quantum‐based drug design.This article is categorized under: Technologies > Structure Discovery and Clustering Technologies > Computational Intelligence Application Areas > Health Care
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.