Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Accretion onto supermassive black holes at close to the Eddington rate is expected to drive powerful winds, which have the potential to majorly influence the properties of the host galaxy. Theoretical models of such winds can simultaneously explain observational correlations between supermassive black holes and their host galaxies, such as the $M- relation, and the powerful multi-phase outflows that are observed in a number of active galaxies. Analytic models developed to understand these processes usually assume simple galaxy properties, namely spherical symmetry and a smooth gas distribution with an adiabatic equation of state. However, the interstellar medium in real galaxies is clumpy and cooling is important, complicating the analysis. We wish to determine how gas turbulence, uneven density distribution, and cooling influence the development of active galactic nucleus (AGN) wind-driven outflows and their global properties on kiloparsec scales. We calculated a suite of idealised hydrodynamical simulations of AGN outflows designed to isolate the effects of turbulence and cooling, both separately and in combination. All simulations initially consisted of a 1 kpc gas shell with an AGN in the centre. We measured the main outflow parameters -- the velocity, the mass outflow rate ($ M out $), and the momentum ($ p out c/L_ AGN $) and energy ($ E out /L_ AGN $) loading factors -- as the system evolves over 1.2 Myr and estimated plausible observationally derived values. We find that adiabatic simulations approximately reproduce the analytical estimates of outflow properties independently of the presence or absence of turbulence and clumpiness. Cooling, on the other hand, has a significant effect, reducing the outflow energy rate by one to two orders of magnitude in the smooth simulations and by up to one order of magnitude in the turbulent ones. The interplay between cooling and turbulence depends on AGN luminosity: in Eddington-limited AGN, turbulence enhances the coupling between the AGN wind and the gas, while in lower-luminosity simulations, the opposite is true. This mainly occurs because dense gas clumps are resilient to low-luminosity AGN feedback but get driven away by high-luminosity AGN feedback. The overall properties of multi-phase outflowing gas in our simulations qualitatively agree with observations of multi-phase outflows, although there are some quantitative differences. We also find that using `observable' outflow properties leads to their parameters being underestimated by a factor of a few compared with real values. We conclude that the AGN wind-driven outflow model is capable of reproducing realistic outflow properties in close-to-realistic galaxy setups and that the $M- relation can be established without efficient cooling of the shocked AGN wind. Furthermore, we suggest ways to improve large-scale numerical simulations by accounting for the effects of AGN wind.
Accretion onto supermassive black holes at close to the Eddington rate is expected to drive powerful winds, which have the potential to majorly influence the properties of the host galaxy. Theoretical models of such winds can simultaneously explain observational correlations between supermassive black holes and their host galaxies, such as the $M- relation, and the powerful multi-phase outflows that are observed in a number of active galaxies. Analytic models developed to understand these processes usually assume simple galaxy properties, namely spherical symmetry and a smooth gas distribution with an adiabatic equation of state. However, the interstellar medium in real galaxies is clumpy and cooling is important, complicating the analysis. We wish to determine how gas turbulence, uneven density distribution, and cooling influence the development of active galactic nucleus (AGN) wind-driven outflows and their global properties on kiloparsec scales. We calculated a suite of idealised hydrodynamical simulations of AGN outflows designed to isolate the effects of turbulence and cooling, both separately and in combination. All simulations initially consisted of a 1 kpc gas shell with an AGN in the centre. We measured the main outflow parameters -- the velocity, the mass outflow rate ($ M out $), and the momentum ($ p out c/L_ AGN $) and energy ($ E out /L_ AGN $) loading factors -- as the system evolves over 1.2 Myr and estimated plausible observationally derived values. We find that adiabatic simulations approximately reproduce the analytical estimates of outflow properties independently of the presence or absence of turbulence and clumpiness. Cooling, on the other hand, has a significant effect, reducing the outflow energy rate by one to two orders of magnitude in the smooth simulations and by up to one order of magnitude in the turbulent ones. The interplay between cooling and turbulence depends on AGN luminosity: in Eddington-limited AGN, turbulence enhances the coupling between the AGN wind and the gas, while in lower-luminosity simulations, the opposite is true. This mainly occurs because dense gas clumps are resilient to low-luminosity AGN feedback but get driven away by high-luminosity AGN feedback. The overall properties of multi-phase outflowing gas in our simulations qualitatively agree with observations of multi-phase outflows, although there are some quantitative differences. We also find that using `observable' outflow properties leads to their parameters being underestimated by a factor of a few compared with real values. We conclude that the AGN wind-driven outflow model is capable of reproducing realistic outflow properties in close-to-realistic galaxy setups and that the $M- relation can be established without efficient cooling of the shocked AGN wind. Furthermore, we suggest ways to improve large-scale numerical simulations by accounting for the effects of AGN wind.
It is well established that supermassive black hole (SMBH) feedback is crucial for regulating the evolution of massive, if not all, galaxies. However, modelling the interplay between SMBHs and their host galaxies is challenging due to the vast dynamic range. Previous simulations have utilized simple subgrid models for SMBH accretion, while recent advancements track the properties of the unresolved accretion disc, usually based on the thin α-disc model. However, this neglects accretion in the radiatively inefficient regime, expected to occur through a thick disc for a significant portion of an SMBH’s lifetime. To address this, we present a novel ‘unified’ accretion disc model for SMBHs, harnessing results from the analytical advection-dominated inflow–outflow solution (ADIOS) model and state-of-the-art general relativistic (radiation-)magnetohydrodynamics (GR(R)MHD) simulations. Going from low to high Eddington ratios, our model transitions from an ADIOS flow to a thin α-disc via a truncated disc, incorporating self-consistently SMBH spin evolution due to Lense–Thirring precession. Utilizing the moving mesh code arepo, we perform simulations of single and binary SMBHs within gaseous discs to validate our model and assess its impact. The disc state significantly affects observable luminosities, and we predict markedly different electromagnetic counterparts in SMBH binaries. Crucially, the assumed disc model shapes SMBH spin magnitudes and orientations, parameters that gravitational wave observatories like LISA and IPTA are poised to constrain. Our simulations emphasize the importance of accurately modelling SMBH accretion discs and spin evolution, as they modulate the available accretion power, profoundly shaping the interaction between SMBHs and their host galaxies.
The Fermi bubbles and the eROSITA bubbles around the Milky Way Galaxy are speculated to be the aftermaths of past jet eruptions from a supermassive black hole in the galactic center. In this work, a 2.5D axisymmetric relativistic magnetohydrodynamic (RMHD) model is applied to simulate a jet eruption from our galactic center and to reconstruct the observed Fermi bubbles and eROSITA bubbles. High-energy non-thermal electrons are excited around forward shock and discontinuity transition regions in the simulated plasma distributions. The γ-ray and X-ray emissions from these electrons manifest patterns on the skymap that match the observed Fermi bubbles and eROSITA bubbles, respectively, in shape, size and radiation intensity. The influence of the background magnetic field, initial mass distribution in the Galaxy, and the jet parameters on the plasma distributions and hence these bubbles is analyzed. Subtle effects on the evolution of plasma distributions attributed to the adoption of a galactic disk model versus a spiral-arm model are also studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.