This study aimed to determine and analyze the performance of an electric motor installed in a small city car, which was an internal combustion engine (ICE) car with manual transmission and front-wheel drive converted into an electric vehicle. A manual transmission vehicle was used, considering its type is the cheapest. This was to push aside the perception that electric cars are not accessible to the lower classes. Another technical matter was the focus on the power and torque performance of the electric motor and the transmission. A 7.5 KW three-phase induction motor was installed and assembled with 200 AH 76.8 VDC batteries. Electronic power steering (EPS) and the air conditioner (AC) were not operated, while power for the electrical accessories and power analyzer was obtained from a separate 12 VDC battery. Vehicle analysis focused on the power consumption, which was measured and acquired using a power analyzer. The vehicle was driven in real terms with three passengers. GPS was also used to determine the vehicle position and collect elevation data during testing. The derivatives of the GPS data were the speed, acceleration, and distance traveled by the vehicle. The initial hypothesis was that the car could cover a distance of 30 km with regular usage.