2022
DOI: 10.5194/isprs-archives-xliii-b3-2022-41-2022
|View full text |Cite
|
Sign up to set email alerts
|

Improving CNN-Based Building Semantic Segmentation Using Object Boundaries

Abstract: Abstract. Semantic segmentation is an active area of research with a wide range of applications including autonomous driving, digital mapping, urban monitoring, land use analysis and disaster management. For the past few years approaches based on Convolutional Neural Networks, especially end-to-end approaches based on architectures like the Fully Convolutional Networks (FCN) and UNet, have made great progress and are considered the current state-of-the-art. Nevertheless, there is still room for improvement as … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?