The CMS computing infrastructure is composed of several subsystems that accomplish complex tasks such as workload and data management, transfers, submission of user and centrally managed production requests. Till recently, most subsystems were monitored through custom tools and web applications, and logging information was scattered over several sources and typically accessible only by experts. In the last year, CMS computing fostered the adoption of common big data solutions based on open-source, scalable, and no-SQL tools, such as Hadoop, InfluxDB, and ElasticSearch, available through the CERN IT infrastructure. Such systems allow for the easy deployment of monitoring and accounting applications using visualisation tools such as Kibana and Grafana. Alarms can be raised when anomalous conditions in the monitoring data are met, and the relevant teams are automatically notified. Data sources from different subsystems are used to build complex workflows and predictive analytics (such as data popularity, smart caching, transfer latency), and for performance studies. We describe the full software architecture and data flow, the CMS computing data sources and monitoring applications, and show how the stored data can be used to gain insights into the various subsystems by exploiting scalable solutions based on Spark.