Textile-reinforced concrete (TRC) as a novel high-performance composite material can be used as a strengthening material and component bearing load alone. The flexural performance of TRC beams strengthened with textile reinforcement such as carbon tows was experimentally examined and associated with those of steel-reinforced concrete (SRC) beams. Through four-point bending tests, this research explores the effects of textile layers and dosages of short textile fibre on the flexural strength of concrete beams. A total of 64 prism samples of size 100 mm × 100 mm × 500 mm were made, flexure-strengthened, and tested to evaluate various characteristics and the efficiency of TRC versus SRC beams. TRC beams performed exceptionally well as supporting material in enhancing concrete’s flexural capacity; in addition, TRC’s average ultimate load effectiveness was up to 56% than that of SRC specimens. Furthermore, the maximum deflection was about 37% lesser than SRC beams. The results showed that by increasing the number of layers, the TRC’s effectiveness was significantly increased, and the failure mode became more ductile.