Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences 2016
DOI: 10.5772/64782
|View full text |Cite
|
Sign up to set email alerts
|

Improving Food Safety by Using One- and Two-Photon- Induced Fluorescence Spectroscopy for the Detection of Mycotoxins

Abstract: The presence of mycotoxins in food products is a major worldwide problem. Nowadays, mycotoxins can only be detected by the use of sample-based chemical analyses. Therefore, we demonstrate the use of one-and two-photon-induced fluorescence spectroscopy for the non-destructive detection of mycotoxins in unprocessed food products. We first explain our optical set-up, which is able to measure the localized oneand two-photon-induced fluorescence spectra. Following, as a case study, the detection of aflatoxin in mai… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 27 publications
0
2
0
Order By: Relevance
“…This holds especially true in scenarios where SNR is not a limiting factor or can be retrieved by higher excitation powers, as this may be the case for low-bleaching samples outside of a clinical context such as the detection of toxins in food safety. 28 Counterintuitively, in the particular case of measurements on NAD(P)H and FAD in solution, the achieved separation with the filters proposed in the literature is further away from the optimum than for the cell models. A possible explanation is that in complex tissue environments other fluorophores may significantly influence the autofluorescence spectrum and external influences may alter the individual TPEF spectra.…”
Section: Discussionmentioning
confidence: 97%
See 1 more Smart Citation
“…This holds especially true in scenarios where SNR is not a limiting factor or can be retrieved by higher excitation powers, as this may be the case for low-bleaching samples outside of a clinical context such as the detection of toxins in food safety. 28 Counterintuitively, in the particular case of measurements on NAD(P)H and FAD in solution, the achieved separation with the filters proposed in the literature is further away from the optimum than for the cell models. A possible explanation is that in complex tissue environments other fluorophores may significantly influence the autofluorescence spectrum and external influences may alter the individual TPEF spectra.…”
Section: Discussionmentioning
confidence: 97%
“…This holds especially true in scenarios where SNR is not a limiting factor or can be retrieved by higher excitation powers, as this may be the case for low-bleaching samples outside of a clinical context such as the detection of toxins in food safety. 28 …”
Section: Discussionmentioning
confidence: 99%