Abandoned cropland may lead to a series of issues regarding the environment, ecology, and food security. In hilly areas, cropland is prone to be abandoned due to scattered planting, relatively fewer sunlight hours, and a lower agricultural input–output ratio. Furthermore, the impact of abandoned rainfed cropland differs from abandoned irrigated cropland; thus, the corresponding land strategies vary accordingly. Unfortunately, monitoring abandoned cropland is still an enormous challenge in hilly areas. In this study, a new approach was proposed by (1) improving the availability of Sentinel-1 and Sentinel-2 images by a series of processes, (2) obtaining training samples from multisource data overlay analysis and timeseries viewer tool, (3) mapping annual land cover from all available Sentinel-1 and Sentinel-2 images, training samples, and the random forest classifier, and (4) mapping the spatiotemporal distribution of abandoned rainfed cropland and irrigated cropland in hilly areas by assessing land-cover trajectories along with time. The result showed that rainfed cropland had lower F1 scores (0.759 to 0.8) compared to that irrigated cropland (0.836 to 0.879). High overall accuracies of around 0.90 were achieved, with the kappa values ranging from 0.851 to 0.862, which outperformed the existing products in accuracy and spatial detail. Our study provides a reference for extracting the spatiotemporal distribution of abandoned rainfed cropland and irrigated cropland in hilly areas.