Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In data centers, up to dozens of tasks are colocated on a single physical machine. Machines are used more efficiently, but tasks' performance deteriorates, as colocated tasks compete for shared resources. As tasks are heterogeneous, the resulting performance dependencies are complex. In our previous work [18] we proposed a new combinatorial optimization model that uses two parameters of a task-its size and its type-to characterize how a task influences the performance of other tasks allocated to the same machine. In this paper, we study the egalitarian optimization goal: maximizing the worst-off performance. This problem generalizes the classic makespan minimization on multiple processors (P||C max). We prove that polynomially-solvable variants of P||C max are NP-hard and hard to approximate when the number of types is not constant. For a constant number of types, we propose a PTAS, a fast approximation algorithm, and a series of heuristics. We simulate the algorithms on instances derived from a trace of one of Google clusters. Algorithms aware of jobs' types lead to better performance compared to algorithms solving P||C max. The notion of type enables us to model degeneration of performance caused by colocation using standard combinatorial optimization methods. Types add a layer of additional complexity. However, our results-approximation algorithms and good average-case performance-show that types can be handled efficiently.
In data centers, up to dozens of tasks are colocated on a single physical machine. Machines are used more efficiently, but tasks' performance deteriorates, as colocated tasks compete for shared resources. As tasks are heterogeneous, the resulting performance dependencies are complex. In our previous work [18] we proposed a new combinatorial optimization model that uses two parameters of a task-its size and its type-to characterize how a task influences the performance of other tasks allocated to the same machine. In this paper, we study the egalitarian optimization goal: maximizing the worst-off performance. This problem generalizes the classic makespan minimization on multiple processors (P||C max). We prove that polynomially-solvable variants of P||C max are NP-hard and hard to approximate when the number of types is not constant. For a constant number of types, we propose a PTAS, a fast approximation algorithm, and a series of heuristics. We simulate the algorithms on instances derived from a trace of one of Google clusters. Algorithms aware of jobs' types lead to better performance compared to algorithms solving P||C max. The notion of type enables us to model degeneration of performance caused by colocation using standard combinatorial optimization methods. Types add a layer of additional complexity. However, our results-approximation algorithms and good average-case performance-show that types can be handled efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.