The theoretical basis of the nonregenerated recirculating dialysate system (RDS) was derived in Part I of this work [M. Prado, L. M. Roa, A. Palma, and J. A. Milán, Ann. Biomed. Eng. (2005)]. This system pursues the maximization of the clearance of hollow fiber dialyzers whose performance is controlled by diffusion, as occurred in standard hemodialysis. In this second part we perform a comparison by digital simulation of the RDS against three well-known two-chamber dialysis systems. As a major outcome, the efficiency of the RDS increased by a factor of five-eight with respect to the efficiency of a single dialyzer operating with a number of transfer units equal to 0.1, that is when the diffusive mass-transfer of the dialyzer is exhausted. Present low-flux dialyzers do not take advantage of the full potential of this technique, but the functional domain where high-flux and high-area dialyzers operate could be more suitable to exploit this technique. We conclude that RDS can be a competitive efficient technique for optimizing the dialysis efficiency.