Nucleoside analogues
are among the most successful bioactive classes
of druglike compounds in pharmaceutical chemistry as they are well-known
for their numerous effective bioactivities in humans, especially as
antiviral and anticancer agents. Coronavirus disease 2019 (COVID-19)
is still untreatable, with its causing virus, the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), continuing to wreak havoc on
the ground everywhere. This complicated international situation urged
all concerned scientists, including medicinal chemists and drug discoverers,
to search for a potent anti-COVID-19 drug. Cordycepin (3′-deoxyadenosine)
is a known natural adenosine analogue of fungal origin, which could
also be synthetically produced. This bioactive phytochemical compound
is characterized by several proven strong pharmacological actions
that may effectively contribute to the comprehensive treatment of
COVID-19, with the antiviral activities being the leading ones. Some
new studies predicted the possible inhibitory affinities of cordycepin
against the principal SARS-CoV-2 protein targets (
e.g.
, SARS-CoV-2 spike (S) protein, main protease (M
pro
) enzyme,
and RNA-dependent RNA polymerase (RdRp) enzyme) based on the computational
approach. Interestingly, the current research showed, for the first
time, that cordycepin is able to potently inhibit the multiplication
of the new resistant strains of SARS-CoV-2 with a very minute
in vitro
anti-SARS-CoV-2 EC
50
of about 2 μM,
edging over both remdesivir and its active metabolite GS-441524. The
ideal pharmacophoric features of the cordycepin molecule render it
a typical inhibitor of SARS-CoV-2 replication, with its flexible structure
open for most types of derivatization in the future. Briefly, the
current findings further support and suggest the repurposing possibility
of cordycepin against COVID-19 and greatly encourage us to confidently
and rapidly begin its preclinical/clinical evaluations for the comprehensive
treatment of COVID-19.