Improving Mass Detection in Mammography Using Focal Loss Based RetinaNet
Semih DEMİREL,
Ataberk URFALI,
Ömer Faruk BOZKIR
et al.
Abstract:Breast cancer is a significant global health issue and plays a crucial role in improving patient outcomes through early detection. This study aims to enhance the accuracy and efficiency of breast cancer diagnosis by investigating the application of the RetinaNet algorithm for mass detection in mammography images. A specialized dataset was created for mass detection from mammography images and validated by an expert radiologist. The dataset was trained using RetinaNet, a state-of-the-art object detection model.… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.