Titanium (Ti), characterized by its exceptional mechanical properties, commendable corrosion resistance and biocompatibility, has emerged as the principal functional materials for implants in biomedical and clinical applications. However, the Ti-6Al-4V (TC4ELI) alloy has cytotoxicity risks, whereas the strength of the existing industrially pure titanium TA4 is marginally inadequate and will significantly limit the scenarios of medical implants. Herein, we prepared ultrafine-grained industrial-grade pure titanium TA4 and titanium alloy TC4ELI via the equal channel angular pressing method, in which the TA4-1 sample has ultrahigh strength of 1.1 GPa and elongation of 26%. In comparison with the micrometer-crystalline Ti-based materials, it showed a 35% reduction in wear depth and more than 10% reduction in wear volume, while the difference in the corrosion potential of the simulated body fluids was not significant (only ∼20 mV). XRD, electron backscatter diffraction, and transmission electron microscope characterization confirms that their superior strengths are mainly due to grain refinement strengthening.