2011
DOI: 10.1111/j.1467-8659.2011.02047.x
|View full text |Cite
|
Sign up to set email alerts
|

Improving Performance and Accuracy of Local PCA

Abstract: Local Principal Component Analysis (LPCA) is one of the popular techniques for dimensionality reduction and data compression of large data sets encountered in computer graphics. The LPCA algorithm is a variant of kmeans clustering where the repetitive classification of high dimensional data points to their nearest cluster leads to long execution times. The focus of this paper is on improving the efficiency and accuracy of LPCA. We propose a novel SortCluster LPCA algorithm that significantly reduces the cost o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2013
2013
2017
2017

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 25 publications
0
1
0
Order By: Relevance
“…However, we are using locality to refer to points within the dataset, rather than treating the problem as a variant of k-means clustering. In local PCA it is common to approximate the whole data distribution by some set of PCA subspaces, and then has to decide which subspace to assign a point to (i.e., which cluster), then doing PCA again for each cluster (Gassenbauer et al, 2011). The method also differs from neighbourhood-preserving methods such as Local Linear Embedding (Roweis & Saul, 2000), where locally flat patches of the manifold are identified and linked together, since we make no linear approximation.…”
Section: Related Algorithmsmentioning
confidence: 99%
“…However, we are using locality to refer to points within the dataset, rather than treating the problem as a variant of k-means clustering. In local PCA it is common to approximate the whole data distribution by some set of PCA subspaces, and then has to decide which subspace to assign a point to (i.e., which cluster), then doing PCA again for each cluster (Gassenbauer et al, 2011). The method also differs from neighbourhood-preserving methods such as Local Linear Embedding (Roweis & Saul, 2000), where locally flat patches of the manifold are identified and linked together, since we make no linear approximation.…”
Section: Related Algorithmsmentioning
confidence: 99%