Abstract-With the increasing interest in deploying 4G/LTE networks, IMS has a potential to be deployed in a wide scale in order to support mobile Internet and value-added services over next-generation networks. Moreover, the effort to create an operator-controlled signaling infrastructure using IP-based protocols has resulted in a large number of functional components and interactions between core networks elements. Thus, the carriers are trying to explore alternative ways to deploy IMS that will allow them to manage their network in a cost effective manner while offering rich communications services. One of such approaches is self-organization of IMS (SOIMS). The self-organizing IMS can enable the IMS functional components to adapt dynamically based on the features like network load, number of users, node failures and available system resources. This paper proposes different mechanisms to handle self-organizing IMS with usage of load balancing paradigm. The proposed solution enables topology hiding, IMS nodes failure recovery, session continuity support, and IMS scalability.