Reducing losses and improving the voltage profile have been the main objectives of electrical power system designers. One of the suggested solutions for achieving these goals is the use of parallel capacitors and distributed generation sources in distribution systems. A location that is optimized for DG installation may not be the best place to minimize losses in improving the system voltage profile. In this paper, determining the optimal location of the dispersed generation unit and the capacitive bank with the goal of optimizing a target function, including losses, improving the voltage profile, and the cost of investment in capacitors and dispersed production. In this paper, IEEE standard 33 buses is considered for simulation, and the results are obtained by using genetic and harmonic search algorithm indicate that DG optimization and capacitor with a target function in which the loss reduction and improvement of the voltage profile is considered to reduce costs, reduce losses, and improve the voltage profile, which are remarkable improvements.