Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A ball-activated sliding sleeve design for multistage cemented lateral completions has been developed that allows multiple frac sleeves to be opened using the same diameter ball, significantly increasing the total number of sleeves available in the completion design. This paper discusses the sleeve design, the challenges associated with cemented laterals, the results of initial field installations, and the ramifications for completion design and execution. Ball-activated sleeves were introduced to overcome limitations of plug and perf designs and facilitate longer and more complex completions. As these completions have evolved, the technology has reached inherent design limitations. This is especially true in cemented lateral completions. These installations require a series of incrementally smaller balls and ball seats that reduce wellbore ID and ultimately limit the total number of sleeves that can be used in the completion. To further extend lateral length and accommodate the cemented laterals, a sliding sleeve device has been developed that allows multiple sliding sleeve valves to be opened with the same size ball and seat. The sliding sleeve design allows up to 90 individual sleeves to be opened as a single point of entry completion without dropping a ball diameter smaller than 4.00-in. in 5.500-in. casing, or a 3.25-in. ball in 4.500-in. casing. This increases wellbore ID over the length of the completion, and increases the total number of sleeves or sleeve clusters that can be employed in the completion design. The higher number of available sleeves affects the completion design, whether it uses single sleeve per stage or clusters of sleeves. In addition, lateral length of the completion is not constrained by the number of sleeves or the reach of coiled tubing. Cemented installations in the US Marcellus, Utica Shale, and Spraberry plays have enabled single-point-of-entry stimulations that optimize hydraulic fracturing pressure and provide a focused frac. In some applications, this has reduced pump rates and surface horsepower requirements by as much as 50% and also reduced the overall frac time. Experience also indicates these completions reduce water requirements by minimizing over-flushing of the formation. These cemented installations illustrate the potential of continued changes in completion designs and the viability of longer laterals. This paper is the first published examination of field performance in the initial installations of the sliding sleeve technology. Field results and data from sleeves installed in Marcellus, Utica Shale, and Spraberry completions are presented. Based on performance in these applications, the paper reviews completion design considerations facilitated by the ability to install larger numbers of sliding sleeves over longer cemented laterals.
A ball-activated sliding sleeve design for multistage cemented lateral completions has been developed that allows multiple frac sleeves to be opened using the same diameter ball, significantly increasing the total number of sleeves available in the completion design. This paper discusses the sleeve design, the challenges associated with cemented laterals, the results of initial field installations, and the ramifications for completion design and execution. Ball-activated sleeves were introduced to overcome limitations of plug and perf designs and facilitate longer and more complex completions. As these completions have evolved, the technology has reached inherent design limitations. This is especially true in cemented lateral completions. These installations require a series of incrementally smaller balls and ball seats that reduce wellbore ID and ultimately limit the total number of sleeves that can be used in the completion. To further extend lateral length and accommodate the cemented laterals, a sliding sleeve device has been developed that allows multiple sliding sleeve valves to be opened with the same size ball and seat. The sliding sleeve design allows up to 90 individual sleeves to be opened as a single point of entry completion without dropping a ball diameter smaller than 4.00-in. in 5.500-in. casing, or a 3.25-in. ball in 4.500-in. casing. This increases wellbore ID over the length of the completion, and increases the total number of sleeves or sleeve clusters that can be employed in the completion design. The higher number of available sleeves affects the completion design, whether it uses single sleeve per stage or clusters of sleeves. In addition, lateral length of the completion is not constrained by the number of sleeves or the reach of coiled tubing. Cemented installations in the US Marcellus, Utica Shale, and Spraberry plays have enabled single-point-of-entry stimulations that optimize hydraulic fracturing pressure and provide a focused frac. In some applications, this has reduced pump rates and surface horsepower requirements by as much as 50% and also reduced the overall frac time. Experience also indicates these completions reduce water requirements by minimizing over-flushing of the formation. These cemented installations illustrate the potential of continued changes in completion designs and the viability of longer laterals. This paper is the first published examination of field performance in the initial installations of the sliding sleeve technology. Field results and data from sleeves installed in Marcellus, Utica Shale, and Spraberry completions are presented. Based on performance in these applications, the paper reviews completion design considerations facilitated by the ability to install larger numbers of sliding sleeves over longer cemented laterals.
Geo-mechanics has always been a challenge during drilling process. It has also been a common observation that 40% of the over-all capex is given away during drilling process. Moreover, it also damages the land mass at large, loads of drill cuttings are generated from subsurface which are disposed on the earth surface, simply affecting the topography. Even, drilling does not prove to be successful in various cases as most of the exploratory wells are found to be dry this issue requires an ultimate solution. A well known technology called microhole drilling has been introduced to cope up with such concern. No doubt, all these specifications are achieved with the help of micro instrumentation.This study reflects the estimation of all the solids as wastes that are generated during the drilling process and imparts the environmental destruction. Microhole has been used effectively so far to hit the wells up to 700ft. Further, serious drilling issues are encountered but with the help of micro instrumentation it can be taken up to 5000ft or even farther. The main aspect that was found during the study that is microholes are drilled with the help of coiled tubing rig which consumes less disturbance area. In order to prove the metal of this technology a geo mechanical simulator is developed and model of microhole is even built on the developed software. The specifications and lithology of lower goru reservoir coordinates were used as input. Later, the results were compared to evaluate the recommended technology to avoid environmental issues and optimize the drilling program.
Poststimulation operations on multistage hydraulically stimulated horizontal wells producing from conventional and unconventional reservoirs have a major impact on long-term well performance. Most common types of poststimulation services on such wells include plug drillout (PDO) operations and well flowback (WFB) operations. During these operations, the hydraulic fracture system experiences major changes in pressure and flowrate, which may affect the well's long-term productivity. Among the many mechanisms responsible for decrease in well productivity, we highlight 1) the risk of losing the connection between the wellbore and hydraulic fracture system because of the development of an unpropped area; 2) rock destabilization, and 3) the risk of scaling and precipitation. In this paper, we describe an integrated engineering and operations workflow for optimizing poststimulation operations on horizontal wells by controlling the productive fracture system evolution during the poststimulation period. The approach is based on applying the secure operating envelope (SOE) concept, which provides a set of operating parameters that ensure preservation of the connection between the hydraulic fractures and wellbore. The SOE is defined for each individual well, using a combination of geomechanical and multiphase transport modeling. It accounts for reservoir properties, well completion, and fracture treatment parameters. High-resolution, real-time monitoring of well performance and active control of bottomhole conditions through choke management ensure the well is operated within the SOE. The production objectives combined with the evolution of the SOE enable an overall strategy for poststimulation operations. The paper outlines how the SOE is constructed. Applications of the proposed approach on horizontal oil and gas wells in unconventional reservoirs in North America are reported, both during well flowback and plug drillout operations. Using the SOE during well flowback helps to predict and avoid a decrease in well production performance caused by excessive proppant flowback which results in creation of near-wellbore pinch points inside hydraulic fractures. Additionally, plug drillout was identified as a critical operation, during which the proppant pack can be destabilized. The associated risk was strongly reduced by applying the SOE concept in combination with high-resolution monitoring. Based on data obtained from more than 50 operated wells, we conclude that the proposed methodology, including application of geomechanical modeling to poststimulation operations, brings significant opportunities for optimization of well performance and securing long-term well productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.