Pleural infection, or pleural empyema, is a severe medical condition associated with high morbidity and mortality rates. Timely and accurate prognostication is crucial for optimizing patient outcomes and resource allocation. Rapid scoring systems have emerged as promising tools in pleural infection prognostication, integrating various clinical and laboratory parameters to assess disease severity and quantitatively predict short-term and long-term outcomes. This review article critically evaluates existing rapid scoring systems, including CURB-65 (confusion, uremia, respiratory rate, blood pressure, age ≥ 65 years), A-DROP (age (male >70 years, female >75 years), dehydration, respiratory failure, orientation disturbance, and low blood pressure), and APACHE II (acute physiology and chronic health evaluation II), assessing their predictive accuracy and limitations. Our analysis highlights the potential clinical implications of rapid scoring, including risk stratification, treatment tailoring, and follow-up planning. We discuss practical considerations and challenges in implementing rapid scoring such as data accessibility and potential sources of bias. Furthermore, we emphasize the importance of validation, transparency, and multidisciplinary collaboration to refine and enhance the clinical applicability of these scoring systems. The prospects for rapid scoring in pleural infection management are promising, with ongoing research and data science advances offering improvement opportunities. Ultimately, the successful integration of rapid scoring into clinical practice can potentially improve patient care and outcomes in pleural infection management.