2024
DOI: 10.3390/bioengineering11040351
|View full text |Cite
|
Sign up to set email alerts
|

Improving Radiology Report Generation Quality and Diversity through Reinforcement Learning and Text Augmentation

Daniel Parres,
Alberto Albiol,
Roberto Paredes

Abstract: Deep learning is revolutionizing radiology report generation (RRG) with the adoption of vision encoder–decoder (VED) frameworks, which transform radiographs into detailed medical reports. Traditional methods, however, often generate reports of limited diversity and struggle with generalization. Our research introduces reinforcement learning and text augmentation to tackle these issues, significantly improving report quality and variability. By employing RadGraph as a reward metric and innovating in text augmen… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2025
2025
2025
2025

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 56 publications
0
0
0
Order By: Relevance