This paper considers the problem of estimating the clock bias and the position of an unknown source using time of arrival (TOA) measurements obtained at a sensor array to achieve time synchronization and source localization. The study starts with deriving the localization mean square error (MSE) for the case where we pretend that the source clock bias is absent and apply TOA positioning to find the source position. An upper bound on the clock bias, over which we shall obtain a higher localization MSE than that from jointly identifying the clock bias with the source position, is established. Motivated by the MSE analysis, this paper proceeds to develop a new efficient solution for joint synchronization and source localization. The new method is in closedform, computationally attractive, and more importantly; it is shown analytically to attain the CRLB accuracy under small Gaussian TOA measurement noise. Computer simulations are conducted to corroborate the theoretical development and illustrate the good performance of the proposed algorithm.