2023
DOI: 10.48550/arxiv.2302.01522
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Improving Recommendation Relevance by simulating User Interest

Abstract: Most if not all on-line item-to-item recommendation systems rely on estimation of a distance like measure (rank) of similarity between items. For on-line recommendation systems, time sensitivity of this similarity measure is extremely important. We observe that recommendation "recency" can be straightforwardly and transparently maintained by iterative reduction of ranks of inactive items. The paper briefly summarizes algorithmic developments based on this selfexplanatory observation. The basic idea behind this… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 6 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?