As a typical refractory iron ore, the utilization of limonite ore with conventional mineral processing methods has great limitations. In this study, suspension magnetization roasting technology was developed and utilized to recover limonite ore. The influences of roasting temperature, roasting time, and reducing gas concentration on the magnetization roasting process were investigated. The optimal roasting conditions were determined to be a roasting temperature of 480 ℃, a roasting time of 12.5 min, and a reducing gas concentration of 20%. Under optimal conditions, an iron concentrate grade of 60.12% and iron recovery of 91.96% was obtained. The phase transformation, magnetism variation, and microstructure evolution behavior were systematically analyzed by X-ray diffraction, vibrating sample magnetometer, and scanning electron microscope. The results indicated that hematite and goethite were eventually transformed into magnetite during the magnetization roasting process. Moreover, the magnetism of roasted products significantly improved due to the formation of ferrimagnetic magnetite in magnetization roasting. This study has implications for the utilization of limonite ore using suspension magnetization roasting technology.