2018
DOI: 10.4108/eai.29-7-2019.159793
|View full text |Cite
|
Sign up to set email alerts
|

Improving Semi-Supervised Classification using Clustering

Abstract: Supervised classification techniques, broadly depend on the availability of labeled data. However, collecting this labeled data is always a tedious and costly process. To reduce these efforts and improve the performance of classification process, this paper proposes a new framework, which combines a most basic classification technique with the semi-supervised process of clustering. Semi-supervised clustering algorithms, aim to increase the accuracy of clustering process by effectively exploring available super… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 18 publications
0
0
0
1
Order By: Relevance
“…Sehingga diharapkan, tingkat kemiripan objek dalam sebuah cluster tersebut bisa tinggi dan lebih rendah untuk cluster yang berbeda. Karena AFCC juga termasuk metode semi supervised clustering, maka diperlukan informasi tambahan seperti pairwise constraint dan class label [15]. Pairwise constraint bisa menentukan apakah 2 (dua) buah objek termasuk dalam cluster yang sama atau tidak, dengan constraint must link atau cannot link [16].…”
Section: Active Fuzzy Constrained Clusteringunclassified
“…Sehingga diharapkan, tingkat kemiripan objek dalam sebuah cluster tersebut bisa tinggi dan lebih rendah untuk cluster yang berbeda. Karena AFCC juga termasuk metode semi supervised clustering, maka diperlukan informasi tambahan seperti pairwise constraint dan class label [15]. Pairwise constraint bisa menentukan apakah 2 (dua) buah objek termasuk dalam cluster yang sama atau tidak, dengan constraint must link atau cannot link [16].…”
Section: Active Fuzzy Constrained Clusteringunclassified