2019
DOI: 10.1145/3328754
|View full text |Cite
|
Sign up to set email alerts
|

Improving Test and Diagnosis Efficiency through Ensemble Reduction and Learning

Abstract: Machine learning is a powerful lever for developing, improving, and optimizing test methodologies to cope with the demand from the advanced nodes. Ensemble methods are a particular learning paradigm that uses multiple models to boost performance. In this work, ensemble reduction and learning is explored for integrated circuit test and diagnosis. For testing, the proposed method is able to reduce the number of system-level tests without incurring substantial increase in defect escapes or yield losses. Significa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 31 publications
0
0
0
Order By: Relevance