2021 6th International Conference on Computer Science and Engineering (UBMK) 2021
DOI: 10.1109/ubmk52708.2021.9558992
|View full text |Cite
|
Sign up to set email alerts
|

Improving the BERT Model with Proposed Named Entity Recognition Method for Question Answering

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 0 publications
0
3
0
2
Order By: Relevance
“…Guven and Unalir [21] used a dataset of questions and answers and compared their approach with several baseline methods. The proposed approach was found to outperform the baselines in terms of both NER accuracy and overall question answering accuracy.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…Guven and Unalir [21] used a dataset of questions and answers and compared their approach with several baseline methods. The proposed approach was found to outperform the baselines in terms of both NER accuracy and overall question answering accuracy.…”
Section: Related Workmentioning
confidence: 99%
“…Proposed approach improves factual accuracy of abstractive text summarization [21] Improving the BERT model with proposed named entity recognition method for question answering BERT, NER Proposed approach improves performance of BERT for question answering [22] A study on named entity recognition with different word embeddings on GMB dataset using deep learning pipelines Deep learning, word embeddings, NER Provides comparison of different word embeddings for NER on the GMB dataset…”
Section: Abstractive Text Summarization Multi-objective Optimizationmentioning
confidence: 99%
“…Это дает богатый спектр исследовательских задач для национальных языков. тематическая классификация английский weighting scheme NE авторский - [83] тематическая классификация английский BiLSTM + CRF авторский 88.0 [84] машинный перевод английский flairNLP субтитры немецкий [85] анализ тональности английский Stanford Named Entity Tagger SES, MSR2016 - [86] анализ тональности английский LSTM авторский - [63] онтология английский BERT-BiLSTM-CRF авторский 81.31 китайский [87] вопросно-ответные системы английский BERT авторский - [88] определение лжи английский spaCy, Stanford's NER отзывы -С одной стороны, NER является классической самостоятельной задачей NLP. С другой стороны, есть ряд задач в области обработки текста и извлечения информации, в которые NER входит как подзадача или часть технологии решения.…”
Section: Ner в предметных областяхunclassified
“…Разработанный AliMe KG, граф знаний в электронной коммерции, помогает понять потребности пользователей, ответить на их вопросы и создать поясняющие тексты, в том числе руководство по покупкам, ответы на вопросы о недвижимости, создание точек продаж. Другое исследование [87] напрямую изучает вопрос NER в вопросно-ответных системах.…”
Section: Ner в задачах Nlpunclassified
“…Although named entity recognition corpora exist, they are primarily focused on Wikipedia (a structured text) [6]. However, since carbonate platform literature is an informal text with fewer restrictions on the style of writing papers, entity extraction in the discipline requires its corpus.…”
Section: Introductionmentioning
confidence: 99%