2020 Computing in Cardiology Conference (CinC) 2020
DOI: 10.22489/cinc.2020.337
|View full text |Cite
|
Sign up to set email alerts
|

Improving the Detection of Acute Coronary Syndrome Using Machine Learning of Blood Biomarkers

Abstract: Background: Acute coronary syndrome (ACS) is one of the main causes of death worldwide. The 12-lead electrocardiogram (ECG) is used to help diagnose ACS, along with clinical risk factors (smoking, diabetes mellitus, hypertension, hscTn and positive family history of ACS. These methods however are associated with many limitations resulting in variable sensitivity/specificity. The aim of this study was to use a machine learning approach to develop an optimum panel of blood protein biomarkers capable of independe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?