Metal halide perovskites have aroused worldwide efforts for developing optoelectronic devices due to their unique optical properties and low‐cost simple fabrication process. In recent years, various perovskites based miniaturized optical devices have been actively investigated owing to their record‐breaking efficiency in different fields, including environmental monitoring, remote sensing, biomedical imaging, and optical communications. In this review, we staged a succinct and critical survey of recently discovered organic–inorganic perovskite photodetectors providing insights into their structural properties and key performance parameters. Firstly, we introduce key features of perovskites‐based photodetectors emphasizing their optoelectronic and electrical properties. Then, we discuss the polarization‐sensitive detection of metal halide perovskites by using polarization selective optical structures. The bandgap engineering for tailoring the properties of perovskite photodetectors by changing the chemical composition and material structures is also highlighted in this report. Finally, we present a perspective on future opportunities and current challenges for designing perovskite based optoelectronic devices.This article is protected by copyright. All rights reserved.