Glass reinforced epoxy composite tubes filled with 1, 2, 3, and 4 wt. % of HNC, MC, Al2O3, SiO2, and SiC nanofillers were fabricated using wet-wrapping process by hand lay-up and tested under quasi-static axial loadings. Crashworthiness parameters and failure modes were recorded. Results indicated that EAC and the specimens’ failure modes are dominated by the type and wt. % of the embedded nanofillers. As compared to pristine glass/epoxy tubes, an enhancement of 230.42, 243.30, 286.43, and 336.12% in the absorbed energy ( U) was attained by the addition of 1, 2, 3, and 4 wt. % of HNC, respectively. An improvement of 21.93, 87.35, 225.99, and 318.07% in U was achieved by the inclusion of 1, 2, 3, and 4 wt. % of MC, respectively. An enhancement of 17.66, 51.63, and 71.94% in U was reported by the integration of 1, 2, and 3% of nano-Al2O3. Whilst a reduction of 31.16% was noticed for 4 wt. % of nano-Al2O3. The incorporation of nano-SiO2 and nano-SiC exhibits a reduction in U of the fabricated tubes. Composites filled with 4 wt. % of HNC has the highest load carrying capacity and EAC of 32.75 kN and 1110.84 J, respectively. So, they seem to be the best appropriate choice for energy absorbing elements. Glass/epoxy composite tubes filled with HNC, MC, and Al2O3 show outstanding energy absorption characteristics. However, specimens filled with SiO2 and SiC nanofillers are ineffective in the crashworthiness applications.