The electrical discharge machining (EDM) is a process characterized by high thermal demands, which tend to cause metallurgical changes in the surface of the workpiece [1][2]. This work aims to conduct a discussion of metallurgical changes in the surface of cavities obtained by the process of EDM in the machining of steel. Several variables were employed, such as cavity depth, electrode geometry and technological parameters of the process. Thus, the goal was to identify the different metallurgical changes that can occur in the machined surfaces. The evaluation of these changes was made from metallographic analysis, measurements of microhardness and of the depth of the layer affected by process. The results of this work identified several metallurgical changes such as formation of white layer, hardness variation and change of microstructure. The occurrence of microcracks also was observed, especially in severe conditions. The greatest variations in results were caused by the change of technological parameters. However, the variation in cavity depth and the change of the electrode geometry also showed influence on the results.