The article provides an analytical review of thermal energy storage. The reasons determining their demand are shown. It has been established that the market of thermal accumulators is developing quite dynamically. According to the forecast of the International Renewable Energy Agency, the global market for thermal accumulators may triple by 2030 from 234 GWh of installed capacity in 2019 to about 800 GWh in 2030. Investments in the development of thermal accumulators are expected to reach 13–28 billion US dollars. Their capacity for power generation can be 491–631 GWh, for heat supply – 143–199 GWh, for cooling – 23–26 GWh. Bloomberg NEF considers the main drivers of such a sharp increase in energy storage capacity are the US Inflation Reduction Act, which provides for more than $369 billion in financing for clean technologies, as well as the European Union's RE Power EU plan to reduce dependence on gas from Russia. The significant additional storage capacity expected from 2025 in the utility sector is in line with the very ambitious renewable energy targets set out in the REPowerEU plan. The purpose of this review is the search and analysis of thermal energy storage technologies for their possible use in the centralized heat supply of Ukraine. The conducted review showed that the most advanced technology for the accumulation of thermal energy is heat capacity of the material storage. It is the cheapest and most common in centralized heat supply. For short-term storage of heat energy, it is advisable to use storage tanks and main heat networks. Special insulated concrete underground storages of both natural and artificial origin are used for seasonal accumulation of thermal energy. A promising technology for seasonal thermal energy storage is an ice battery developed by the Viessmann company, which requires much less space than the heat capacity of the material storage technology. Thermochemical batteries are in the early stages of development, their demonstration samples may be manufactured by 2050. Keywords: battery, thermal energy, heat capacity, phase transition.