The enhancement of the properties of fiber-based polymer composites is generally possible by the hybridization of fibers. Using synthetic and natural fibers in the composites will enhance the applications, and the problem of voids is solved by using fillers. Mixing banana fiber with glass fibers creates a lightweight yet robust material for architectural elements such as panels and insulation. The current investigation encompassed the production of a glass/banana hybrid composite by integrating a Zirconium carbide (ZrC) filler via compression molding methodologies. The filler proportion varied at five levels: 0wt.%, 0.5wt.%, 1wt.%, 1.5wt.% and 2wt.%, within an epoxy resin matrix. The composite materials underwent mechanical, water absorption, and vibration analysis. Furthermore, the fractured surface was examined using a field emission scanning electron microscope (FESEM) better to understand the interactions between the fibers and the matrix. The initial findings indicated that the incorporation of Banana and glass fibers in composite materials has the potential to achieve an optimal balance between strength and versatility. The key findings include a considerable increase in tensile, flexural, and impact strengths with 1.5wt.% ZrC filler, with improvements of up to 34.5% in impact strength and 44.7% in compressive strength over the unfilled composite.