2022
DOI: 10.48550/arxiv.2206.02637
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Improving the performance of quantum approximate optimization for preparing non-trivial quantum states without translational symmetry

Abstract: The variational preparation of complex quantum states using the quantum approximate optimization algorithm (QAOA) is of fundamental interest, and becomes a promising application of quantum computers. Here, we systematically study the performance of QAOA for preparing ground states of target Hamiltonians near the critical points of their quantum phase transitions, and generating Greenberger-Horne-Zeilinger (GHZ) states. We reveal that the performance of QAOA is related to the translational invariance of the tar… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 75 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?