In this work, the unsteady turbulent flow in a new solar air heater test bench, developed in our LASEM laboratory, was predicted. The considered system consists of two passages solar air heater separated by an absorber and powered by a fan working in a delivery mode, placed in the hole inlet side the insulation. On this system, a glass is hanging on the front side and an absorber is inserted inside. On the glass side, it is connected to the box prototype through a pipe. The hot air flow is routed towards the box prototype. Two circular holes, are located in the same face of the box prototype. The inlet hole allows the hot air supply. However, the outlet hole allows its escape into the ambient environment. By using the ANSYS Fluent 17.0 software, the Navier-Stokes equations coupled with the standard k-ω turbulence model were resolved. The numerical results were compared with our experimental data, established in the second passage of the solar air heater test bench. The good agreement confirms the validity of the numerical method. The range of temperatures is very useful in many applications such as industrial and domestic applications.