Sensor networks have helped wireless communication systems. Over the last decade, researchers have focused on energy efficiency in wireless sensor networks. Energy-efficient routing remains unsolved. Because energyconstrained sensors have limited computing capabilities, extending their lifespan is difficult. This work offers a simple, energy-efficient data fusion technique employing zonal node information. Using the witness-based data fusion technique, the evaluated network lifetime, energy consumption, communication overhead, end-to-end delay, and data delivery ratio. Energyefficient data fusion optimizes energy utilization using squirrel search optimization and a recurrent neural network. The method allows the system to recognize a sensor with excessive energy dissipation and relocate data fusion to a more energy-efficient node. The proposed model was compared against artificial neural network-particle swarm optimization (ANN-PSO), cuckoo optimization algorithm-back propagation neural network (COABPNN), Elman neural network-whale optimization algorithm (ENN-WOA), and extreme learning machine-particle swarm optimization (ELM-PSO). The model achieved 94.50% network lifetime, 26.63% communication overhead, 93.85% data delivery ratio, 10.50 ms end-to-end delay, and 282 J energy usage.