Die vorliegende Arbeit präsentiert Forschungsarbeiten basierend auf nanoskopischen Oberflächenmessungen an plasmonischen Metaoberflächen und zweidimensionalen Materialien, insbesondere dem halbleitenden Übergangsmetal-Dichalcogenid (TMDC) WS_2. Die Thesis ist in sieben Kapitel untergegliedert. Die Einleitung vermittelt einen Überblick über die treibenden Kräfte hinter der Forschung im Bereich der Nanophotonik an zweidimensionalen Materialsystemen. Die Untersuchung der Licht-Materie-Wechselwirkung an dünnen Materialgrenzflächen zieht sich als roter Faden durch die gesamte Arbeit. Das zweite Kapitel beschreibt den experimentellen Aufbau, der für die Durchführung der nanoskopischen Messungen in dieser Arbeit implementiert wurde. Es werden theoretische Grundlagen, das Messprinzip und die Implementierung des optischen Rasternahfeldmikroskops (s-SNOM) skizziert. Außerdem wird ein Strom-Spannungs-Rasterkraftmikroskop (c-AFM) im Kontaktmodus genutzt, um elektrische Ströme auf mikroskopischen zweidimensionalen TMDC-Terrassen zu messen. In den darauffolgenden vier Kapiteln werden die Beiträge dieser Arbeit zur Untersuchung der Licht-Materie-Wechselwirkung auf der Nanoskala aus verschiedenen Perspektiven vorgestellt. Jedes Kapitel enthält eine kurze Einleitung, einen Theorieteil, Messdaten oder Simulationsergebnisse sowie eine Analyse; vervollständigt durch einen Schlussteil. Die zentrale Arbeit an einer metallischen Metaoberfläche aus elliptischen Goldscheiben wird in Kapitel 3 vorgestellt. Der zugehörige Theorieteil führt in das Konzept von Oberflächen-Plasmon-Polaritonen (SPP) ein, das für den Forschungsbereich der Plasmonik im Allgemeinen wesentlich ist. Verschiedene Methoden zur Berechnung der Dispersionsrelation dieser Oberflächenmoden an ein- und mehrschichtigen Grenzflächen werden auf die untersuchte Metaoberflächenprobe angewendet. Das Modell sagt drei verschiedene Moden voraus, die sich an der Grenzfläche ausbreiten. Eine teil-gebundene ins Substrat abstrahlende Oberflächenmode sowie zwei vergrabene stark gebundene anisotrope Moden. Eine auf der Probe platzierte Nanokugel aus Silizium wird als radiale Anregungsquelle verwendet. Der Vergleich mit s-SNOM-Nahfeldbildern zeigt, dass nur die schwach gebundene geführte Modenresonanz ausreichend angeregt wurde, um durch s-SNOM-Bildgebung nachgewiesen werden zu können. Die schwache Oberflächenbindung erklärt die scheinbar isotrope Ausbreitung auf der anisotropen Oberfläche. Die Beobachtung der verbleibenden stark eingegrenzten anisotropen vergrabenen Moden würde eine verbesserte tiefenempfindliche Auflösung des Systems erfordern, die im Prinzip für Schichtdicken von 20 nm möglich sein sollte. Darüber hinaus wirft die Beobachtung die Frage auf, ob die durch Impuls- und Modenvolumenanpassung der Nanokugel gegebene Anregungseffizienz einen ausreichenden Anregungsquerschnitt erzeugt, um nachweisbare vergrabene SPP-Moden zu erzeugen. In Kapitel 4 wird die Idee der Visualisierung vergrabener elektrischer Felder mit s-SNOM fortgesetzt. Hier wird es auf die Untersuchung von WS_2 angewendet, einem zweidimensionalen TMDC-Material, welches Photolumineszenz zeigt. Durch die Strukturierung des Galliumphosphid-Substrats unter der hängenden Monolage, die von einer dünnen Schicht aus hBN getragen wird, wird die Photolumineszenzausbeute um den Faktor 10 erhöht. Dies wird durch den Entwurf einer lateralen DBR-Mikrokavität mit zusätzlich optimierter vertikaler Tiefe erreicht, die in das Substrat geätzt wurde. Die hochauflösende Abbildung der elektrischen Feldverteilung im Resonator wird durch den Einsatz von s-SNOM ermöglicht, um die Verbesserung der Einkopplung durch diese beiden Ansätze zu bewerten. Es konnte festgestellt werden, dass die laterale Struktur überwiegend zur verstärkten Photolumineszenzausbeute beiträgt, während für die Einkopplung keine offensichtliche Verstärkung auf die vertikale Strukturoptimierung zurückgeführt werden konnte. Das zweidimensionale Material WS_2 wird in Kapitel 5 erneut mit Hilfe von c-AFM untersucht. Unterschiedlich dicke Multilagen auf Graphen und Gold dienen als Tunnelbarrieren für vertikale Ströme zwischen Substrat und leitender c-AFM-Messpitze. Die Daten können mit einem Fowler-Nordheim-Modell mit Parametern für die Tunnelbreite und Schottky-Barrierenhöhen der beiden Grenzflächen erklärt werden. Die Messungen zeigen jedoch eine schwache Reproduzierbarkeit, was eine detailliertere Zusammenfassung der relevanten Fehlerquellen erfordert. In der Schlussfolgerung des Kapitels werden mehrere Schlüsselaspekte vorgeschlagen, die bei künftigen Messungen berücksichtigt werden sollten. Entscheidend ist, dass c-AFM sehr empfindlich auf die Adsorption von Wasserfilmen an der Probenoberfläche reagiert, worunter WS_2-Oberflächen unter Umgebungsbedingungen leiden...