Laboratory experiments have been recently reintroduced into the ideas-to-applications pipeline for geophysical applications. Benefiting from recent technological advances, we believe that in the coming years, laboratory experiments can play a major role in supporting field experiments and numerical modeling, to explore some of the current challenges of seismic imaging in terms of, for instance, acquisition design or benchmarking of new imaging techniques at a low cost and in an agile way. But having confidence in the quality and accuracy of the experimental data obtained in a complex configuration, which mimics at a reduced scale a real geologic environment, is an essential prerequisite. This requires a robust framework regardless of the configuration studied. Our goal is to provide a global overview of this framework in the context of offshore seismics. To illustrate it, a reduced-scale model is used to represent a 3D complex-shaped salt body buried in sedimentary layers with curved surfaces. Zero-offset and offset reflection data are collected in a water tank, using a conventional pulse-echo technique. Then, a cross-validation approach is applied, which allows us, through comparison between experimental data and the numerical simulation, to point out some necessary future improvements of the laboratory setup to increase the accuracy of the experimental data, and the limitations of the numerical implementation that must also be tackled. Due to this approach, a hierarchical list of points can be collected, to which particular attention should be paid to make laboratory experiments an efficient tool in seismic exploration. Finally, the quality of the complex reduced-scale model and the global framework is successfully validated by applying reverse time migration to the laboratory data.