Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Soft actuators made of thermoresponsive polymers have great potential for intelligent robotics and biomedical devices due to their reversible deformation capability in response to temperature fluctuations. However, they are constrained by a predefined phase transition temperature, limited directional deformation, and nonbiocompatible formulations, thereby restricting their practical utility. Herein a new biomimicry approach is presented to overcome these limitations by developing hydroand hydrothermally responsive soft actuators made of biocompatible and pliable materials i.e. cotton yarn and polyurethane. We mimic the tubular shape of elephant trunks with their unique muscle orientation by embedding a helical cotton yarn within a hydrophilic polyurethane tube, followed by targeted surface patterning. Unlike the narrowrange shape morphing across the phase transition temperature boundary of typical thermoresponsive hydrogel actuators, we harness hydrothermal stiffness variations in polyurethane to obtain consistent morphing capabilities over a much wider temperature range. The developed actuators can perform versatile activities such as linear, bending, curvilinear, and rotating movements, overcoming the unidirectional motion limitations of conventional soft actuators. The cell viability assay on the building block materials also confirms the high biocompatibility of the actuators. The reported facile fabrication strategy provides new insights for designing complex yet free-standing soft actuators from readily available supple materials.
Soft actuators made of thermoresponsive polymers have great potential for intelligent robotics and biomedical devices due to their reversible deformation capability in response to temperature fluctuations. However, they are constrained by a predefined phase transition temperature, limited directional deformation, and nonbiocompatible formulations, thereby restricting their practical utility. Herein a new biomimicry approach is presented to overcome these limitations by developing hydroand hydrothermally responsive soft actuators made of biocompatible and pliable materials i.e. cotton yarn and polyurethane. We mimic the tubular shape of elephant trunks with their unique muscle orientation by embedding a helical cotton yarn within a hydrophilic polyurethane tube, followed by targeted surface patterning. Unlike the narrowrange shape morphing across the phase transition temperature boundary of typical thermoresponsive hydrogel actuators, we harness hydrothermal stiffness variations in polyurethane to obtain consistent morphing capabilities over a much wider temperature range. The developed actuators can perform versatile activities such as linear, bending, curvilinear, and rotating movements, overcoming the unidirectional motion limitations of conventional soft actuators. The cell viability assay on the building block materials also confirms the high biocompatibility of the actuators. The reported facile fabrication strategy provides new insights for designing complex yet free-standing soft actuators from readily available supple materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.