Background
The growing concern of antibiotic-resistant microbial strains worldwide has prompted the need for alternative methods to combat microbial resistance. Biofilm formation poses a significant challenge to antibiotic efficiency due to the difficulty of penetrating antibiotics through the sticky microbial aggregates. Drug repurposing is an innovative technique that aims to expand the use of non-antibiotic medications to address this issue. The primary objective of this study was to evaluate the antimicrobial properties of Diltiazem HCl, a 1,5-benzothiazepine Ca2+ channel blocker commonly used as an antihypertensive agent, against four pathogenic bacteria and three pathogenic yeasts, as well as its antiviral activity against the Coxsackie B4 virus (CoxB4).
Methods
To assess the antifungal and antibacterial activities of Diltiazem HCl, the well diffusion method was employed, while crystal violet staining was used to determine the anti-biofilm activity. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay was utilized to evaluate the antiviral activity of Diltiazem HCl against the CoxB4 virus.
Results
This study revealed that Diltiazem HCl exhibited noticeable antimicrobial properties against Gram-positive bacteria, demonstrating the highest inhibition of Staphylococcus epidermidis, followed by Staphylococcus aureus. It effectively reduced the formation of biofilms by 95.1% and 90.7% for S. epidermidis, and S. aureus, respectively. Additionally, the antiviral activity of Diltiazem HCl was found to be potent against the CoxB4 virus, with an IC50 of 35.8 ± 0.54 μg mL−1 compared to the reference antiviral Acyclovir (IC50 42.71 ± 0.43 μg mL−1).
Conclusion
This study suggests that Diltiazem HCl, in addition to its antihypertensive effect, may also be a potential treatment option for infections caused by Gram-positive bacteria and the CoxB4 viruses, providing an additional off-target effect for Diltiazem HCl.