2014
DOI: 10.1002/cpe.3409
|View full text |Cite
|
Sign up to set email alerts
|

Improving the user experience of the rCUDA remote GPU virtualization framework

Abstract: Registro de acceso restringido Este recurso no está disponible en acceso abierto por política de la editorial. No obstante, se puede acceder al texto completo desde la Universitat Jaume I o si el usuario cuenta con suscripción. Registre d'accés restringit Aquest recurs no està disponible en accés obert per política de l'editorial. No obstant això, es pot accedir al text complet des de la Universitat Jaume I o si l'usuari compta amb subscripció. Restricted access item This item isn't open access because of publ… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
20
0

Year Published

2016
2016
2019
2019

Publication Types

Select...
6

Relationship

4
2

Authors

Journals

citations
Cited by 13 publications
(20 citation statements)
references
References 16 publications
0
20
0
Order By: Relevance
“…Another aspect which influences the execution time is the frequency used to poll the network for work completions, usually referred to as the network polling interval. This period seems to be lower in rCUDA than the one used by CUDA to poll the PCIe link, as demonstrated in [14]. In this manner, for short tests where the sum of these small waits becomes an important part of the total execution time, rCUDA runs faster than CUDA.…”
Section: Impact Of the Improvements On Rodinia Benchmarkmentioning
confidence: 92%
See 2 more Smart Citations
“…Another aspect which influences the execution time is the frequency used to poll the network for work completions, usually referred to as the network polling interval. This period seems to be lower in rCUDA than the one used by CUDA to poll the PCIe link, as demonstrated in [14]. In this manner, for short tests where the sum of these small waits becomes an important part of the total execution time, rCUDA runs faster than CUDA.…”
Section: Impact Of the Improvements On Rodinia Benchmarkmentioning
confidence: 92%
“…For example, a single call to cudaDeviceSynchronize takes approximately 40 microseconds in rCUDA, and about 530 microseconds in CUDA. The cause of this variance resides in the internal algorithm used in rCUDA to determine the end of the call, which benefits rCUDA in these short tests [14]. Still, the time saved in these calls does not completely explain the better performance of rCUDA in these tests.…”
Section: Impact Of the Improvements On Rodinia Benchmarkmentioning
confidence: 99%
See 1 more Smart Citation
“…Full virtualization completely emulates the CPU, memory, and I/O devices in order to provide a guest OS with an environment iden- [Becchi et al 2012;Duato et al 2009;Duato et al 2010a;Duato et al 2010b;Giunta et al 2010;Gupta et al 2009;Hansen 2007;Humphreys et al 2002;Jang et al 2013;Kato et al 2012;Kuzkin and Tormasov 2011;Laccetti et al 2013;Lagar-Cavilla et al 2007;Lama et al 2013;Lee et al 2016;Li et al 2012;Liang and Chang 2011;Merritt et al 2011;Montella et al 2014;Montella et al 2016a;Montella et al 2016b;Niederauer et al 2003;Oikawa et al 2012;Peña et al 2014;Pérez et al 2016;Prades et al 2016;Ravi et al 2011;Reaño et al 2012;Reaño et al 2013;Reaño et al 2015a;Reaño et al 2015b;Rossbach et al 2011;Sengupta et al 2013;Sengupta et al 2014;Shi et al 2009;Shi et al 2011;Shi et al 2012;Tien and You 2014;Vinaya et al 2012;Xiao et al 2012;You et al 2015;...…”
Section: System Virtualizationmentioning
confidence: 99%
“…If it is successful, the synchronization call is thus avoided. A detailed analysis can be found in [22].…”
Section: Dealing With Synchronizationmentioning
confidence: 99%