Crash injuries not only result in huge property damages, physical distress, and loss of lives, but arouse a reduction in roadway capacity and delay the recovery progress of traffic to normality. To assess the resilience of post-crash tunnel traffic, two novel concepts, i.e., surrogate resilience measure (SRM) and injury-based resilience (IR), were proposed in this study. As a special kind of semi-closed infrastructure, urban tunnels are more vulnerable to traffic crashes and injuries than regular roadways. To assess the IR of the post-crash roadway tunnel traffic system, an over-one-year accident dataset comprising 8621 crashes in urban roadway tunnels in Shanghai, China was utilized. A total of 34 variables from 11 factors were selected to establish the IR assessment indicator system. Methodologically, to tackle the skewness issue in the dataset, a binary skewed logit (Scobit) model was found to be superior to a conventional logistic model and subsequently adopted for further analysis. The estimated results showed that 15 variables were identified to be significant in assessing the IR of the roadway tunnels in Shanghai. Finally, the formula for calculating the IR levels of post-crash traffic systems in tunnels was given and would be a helpful tool to mitigate potential trends in crash-related resilience deterioration. The findings of this study have implications for bridging the gap between conventional traffic safety research and system resilience modeling.