When choosing between delayed or uncertain outcomes, individuals discount the value of such outcomes on the basis of the expected time to or the likelihood of their occurrence. In an integrative review of the expanding experimental literature on discounting, the authors show that although the same form of hyperbola-like function describes discounting of both delayed and probabilistic outcomes, a variety of recent findings are inconsistent with a single-process account. The authors also review studies that compare discounting in different populations and discuss the theoretical and practical implications of the findings. The present effort illustrates the value of studying choice involving both delayed and probabilistic outcomes within a general discounting framework that uses similar experimental procedures and a common analytical approach.Choice is relatively predictable when the alternatives differ on only one dimension. For example, if individuals are offered a choice between two rewards that differ only in amount, they generally choose the larger rather than the smaller reward. Similarly, if offered a choice between two rewards that differ only in delay, individuals tend to choose the reward available sooner rather than the one available later, and if offered a choice between two alternatives that differ only in probability, they tend to choose the more certain reward. These same general principles, and a complementary set of principles for negative outcomes (e.g., smaller punishments will be chosen over larger ones), apply both to humans and other animals. These behavioral tendencies obviously make both economic and evolutionary sense.Problems arise, however, when choice options differ on more than one dimension-for example, when an individual must choose between a smaller reward available sooner and a larger reward available later. It is also unclear, in general, which alternative an individual would (or should) select when choosing between a smaller, more certain reward and a larger, less certain one or between a less certain reward available sooner and a more certain, but more delayed, reward. These problems are only compounded when rewards differ on all three dimensions (i.e., amount, delay, and probability). The central issue is how individuals make trade-offs among their preferences on these dimensions (Keeney & Raiffa, 1993).This issue is not only of theoretical interest; it also has implications for everyday decision making, which often involves outcomes that differ on multiple dimensions. Examples of such decisions include deciding whether to purchase a less expensive item that can be enjoyed now or to save for a more expensive one; whether to choose a risky investment that potentially could pay off at a high rate or one that pays a low but guaranteed rate of return; and whether to buy