2021
DOI: 10.1007/s11467-021-1056-y
|View full text |Cite
|
Sign up to set email alerts
|

Impurity effect as a probe for the pairing symmetry of graphene-based superconductors

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
6
1
1

Relationship

1
7

Authors

Journals

citations
Cited by 10 publications
(5 citation statements)
references
References 37 publications
0
4
0
1
Order By: Relevance
“…入磁性的点缺陷 [26−28] , 因此, 理论上可以通过单个 磁性杂质附近的局域电子结构来定性模拟晶界附 近的电子结构并进一步研究YSR态. 对超导体的 单个杂质效应的研究通常有两种有效的方法, 一种 是忽略杂质对超导序参量的影响, 近似认为超导序 参量均匀分布, 将哈密顿量分为均匀项和杂质项两 个部分, 其中均匀部分可以进行傅里叶变换到动量 空间, 杂质项可以视作微扰或者一个散射中心处 理, 在T矩阵或者微扰论结合戴逊方程的基础上 获得系统的格林函数, 进一步可以研究系统的其他 性质 [16,17,24] . 这种方法的缺点是忽略了序参量的空 间涨落, 尤其是我们通常关心杂质附近的局域特 性, 而杂质附近的超导序参量往往被压制了.…”
Section: 理论计算显示 在石墨烯材料的晶界附近会引unclassified
“…入磁性的点缺陷 [26−28] , 因此, 理论上可以通过单个 磁性杂质附近的局域电子结构来定性模拟晶界附 近的电子结构并进一步研究YSR态. 对超导体的 单个杂质效应的研究通常有两种有效的方法, 一种 是忽略杂质对超导序参量的影响, 近似认为超导序 参量均匀分布, 将哈密顿量分为均匀项和杂质项两 个部分, 其中均匀部分可以进行傅里叶变换到动量 空间, 杂质项可以视作微扰或者一个散射中心处 理, 在T矩阵或者微扰论结合戴逊方程的基础上 获得系统的格林函数, 进一步可以研究系统的其他 性质 [16,17,24] . 这种方法的缺点是忽略了序参量的空 间涨落, 尤其是我们通常关心杂质附近的局域特 性, 而杂质附近的超导序参量往往被压制了.…”
Section: 理论计算显示 在石墨烯材料的晶界附近会引unclassified
“…The existence of all off-diagonal matrix elements indicates that this disorder correlates different sublattices and spins, through the induced spatial inhomogeneity of the order parameters around the impurities. The self-energy can therefore provide valuable information about the LDOS around impurities through its connection to the LDOS [87]. Since these superconducting phases may be mediated by plasmons in a proximitized metal layer, the corresponding coupling parameters may also be controlled by changing the plasmonic properties of the metal or the distance between the metal and the graphene sheet.…”
Section: Disorder-enhanced P-wave Superconductivitymentioning
confidence: 99%
“…The existence of all off-diagonal matrix elements indicates that this disorder correlates different sublattices and spins, through the induced spatial inhomogeneity of the order parameters around the impurities. The self-energy can provide valuable information about the local density of states around impurities through its connection to the local density of states (LDoS) [86].…”
Section: Disorder-enhanced P-wave Superconductivitymentioning
confidence: 99%