2020
DOI: 10.1039/c9tc05008f
|View full text |Cite
|
Sign up to set email alerts
|

Impurity states in Mo1−xMxSe2 compounds doped with group VB elements and their electronic and thermal transport properties

Abstract: Impurity states and defects scattering introduced by substitutional doping of Mo1−xMxSe2 with group VB elements.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
9
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
8

Relationship

3
5

Authors

Journals

citations
Cited by 14 publications
(12 citation statements)
references
References 71 publications
0
9
0
2
Order By: Relevance
“…The electronic-thermal transport performances of TE materials could be optimized not only by doping foreign elements, , forming solid solutions , and regulating the microstructure, but could also be boosted by applying external magnetic fields. , Due to the Lorentz force acting on the carriers, the applied magnetic fields could strengthen the scattering of carriers and thus enhance the ρ and S and concomitantly reduce the κ e and κ . For topological materials with high carrier mobility, such as Cd 3 As 2 , , NbP, , and PtSn 4 , the magnetic fields have very remarkable influences on the electronic–thermal transport properties and lead to much enhanced ZT values.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…The electronic-thermal transport performances of TE materials could be optimized not only by doping foreign elements, , forming solid solutions , and regulating the microstructure, but could also be boosted by applying external magnetic fields. , Due to the Lorentz force acting on the carriers, the applied magnetic fields could strengthen the scattering of carriers and thus enhance the ρ and S and concomitantly reduce the κ e and κ . For topological materials with high carrier mobility, such as Cd 3 As 2 , , NbP, , and PtSn 4 , the magnetic fields have very remarkable influences on the electronic–thermal transport properties and lead to much enhanced ZT values.…”
Section: Resultsmentioning
confidence: 99%
“…Electronic-Thermal Transport Performances under Magnetic Fields. The electronic-thermal transport performances of TE materials could be optimized not only by doping foreign elements, 44,45 forming solid solutions 46,47 and regulat- ing the microstructure, 48 but could also be boosted by applying external magnetic fields. 49,50 Due to the Lorentz force acting on the carriers, the applied magnetic fields could strengthen the scattering of carriers and thus enhance the ρ and S and concomitantly reduce the κ e and κ.…”
Section: ■ Results and Discussionmentioning
confidence: 99%
“…Dedicated efforts have been made over the past several decades. It is well known that optimization of carrier concentration and electronic band engineering to increase the carrier effective mass m * are effective stratagems to increase the power factor. Moreover, designing the hierarchical structure, forming a solid solution, and nanostructuring are adopted to intensify the phonon scattering and to decrease the thermal conductivity. …”
Section: Introductionmentioning
confidence: 99%
“…的新能源材料和新能源技术吸引了科学家的广泛关 注 [1] 。热电材料能够实现热能和电能的直接可逆转 换,在汽车废热回收、工业余热发电、半导体精确 温控、制冷、5G/6G 通讯和深空/深海特种电源等领 域有重要和广泛的应用前景 [2][3][4] 。热电材料性能的优 劣 可 以 用 无 量 纲 热 电 优 值 ZT 来 表 征 , ZT=S 2 T/(e+L+B),其中为电导率,S 为塞贝克 系数,PF=S 2 被称为材料的功率因子,T 为绝对温 度,κe、κL 和 κB 分别为载流子热导率、晶格热导率 和双极热导率。κB 主要在材料中发生本征激发,电 子和空穴对形成双极扩散时比较显著。提升热电转 换效率要求提高热电材料的 ZT,意味着增加功率因 子(S 2 )以及降低 [5] 。然而,决定 ZT 的主要热 电参数(、S 和)是相互制衡的,单独优化某一 个物理参数难以实现 ZT 的提升:优化三个物理参 数中任何一个通常会对其它两个参数造成不利的影 响, 例如增大会同时增大e 和以及降低 S。 因此, 要显著改善热电材料 ZT 需实现各热电输运参数 (、 S 和)之间的解耦和独立优化。近年来,研究人员 主要采用载流子浓度优化、能带工程、固溶和结构 纳米化等策略来解耦和优化各热电输运参数 [6][7][8][9][10][11][12][13][14][15] , 且在 Bi2Te3 [9] 、PbTe [10] 、CoSb3 [11] 、Mg2Si1-xSnx [12] 、 SnSe [13] 、Half-Heusler [14] 、Mg3Sb2 [15] 等代表性热电 材料中获得了 ZT 值的显著提升。 过渡金属硫属化合物(TMDs)具有可调制的 电子能带结构和电学性能,且部分 TMDs 拥有较大 的禁带宽度以及较高的 S,具有中高温热电发电应 用潜力 [16][17] 。Huang 等 [18] 通过在 WS2 中进行 Ti 掺 杂可将本征 WS2 较低的 ZT 提升 70 倍,该化合物的 层状结构特征导致烧结块体的热电性能具有强各向 异性。Kong 等 [19] 以 MoS2 为载体,通过掺杂 O 形成 MoO2 纳米第二相使材料的热电性能提升了 50 倍, 说明带隙较大的半导体拥有较大的中温热电应用潜 力。此外,在 MoS2 中掺杂 V 可以同时优化载流子 浓度和载流子迁移率以及显著提升,并能通过原 位形成 VMo2S4 纳米夹杂物来增强界面声子散射和 降低材料的L, 最终实现热电优值 ZT 的大幅提高 [20] 。 由于自身具有多电子能谷能带结构和较大的禁带宽 度,MoSe2 和 MoTe2 被认为是 TMDs 热电应用中的 佼佼者。Ruan 等 [21] 通过在 MoSe2 中进行 Mg 插 层,优化材料的能带结构,并结合 Nb 掺杂,提高 空穴浓度,能够提升和 PF 并同时降低L,ZT 值 获得显著提高。Zhang 等 [22] 研究发现在 MoSe2 的 Se 位进行 Te 固溶能增强对载热声子的散射作用, 显著 降低二元固溶体较高的L, 室温下的降幅达到 85%; [23] 和 Mott 等 [24] 对 V、Nb 和 Ta 掺杂 [22] 相当,明显高于 MoSe2 二元化合物 [23] 。 表 1 Nb2yMo0.5-yW0.5-ySeTe (0≤y≤0.035) 固溶体的组成和室温热电输运性质 [22] ,具有最低的 (00l)择优取向。由于取向度和固溶的共同影响, 二元化合物 Ta0.05Mo0.95Se2 的 κL 明显高于三元固溶 体和四元固溶体;且 Nb0.03Mo0.485W0.485SeTe 在//P 方向获得了所有产物中最低的 κL。同等掺杂量条件 下,四元固溶体 Nb0.05Mo0.475W0.475SeTe 的 p 为 6.61 ×10 2...…”
unclassified
“…Compositions and transport parameters of Nb2yMo0.5-yW0.5-ySeTe (0≤y≤0.035) solid solutions =1.0m0~2.3 m0)[23] 有所提高,这有利于该四元 固溶体获得更高的功率因子(PF(m * ) 2/3  )。 Nb2yMo0.5-yW0.5-ySeTe 固溶体的同时增大,这主要 是由于掺杂 Nb 后固溶体的得到了大幅提升,e 随之增加的缘故。由于 Mo0.5W0.5SeTe 固溶体的 Eg 较大(0.998 eV,见补充材料表 S1) ,y≥0.015 样品 在测试温度区域内不会出现显著的本征激发,这与 和 κL 也更高,因此在//P 方向的 ZT 反而相对略高。 y=0.015 的 Nb0.03Mo0.485W0.485SeTe 固溶体在 823 K 和 //P 方 向 获 得 最 大 ZT(0.36) ,略优于P 方向…”
unclassified