Imputation of missing microclimate data of coffee-pine agroforestry with machine learning
Heru Nurwarsito,
Didik Suprayogo,
Setyawan Purnomo Sakti
et al.
Abstract:This research presents a comprehensive analysis of various imputation methods for addressing missing microclimate data in the context of coffee-pine agroforestry land in UB Forest. Utilizing Big data and Machine learning methods, the research evaluates the effectiveness of imputation missing microclimate data with Interpolation, Shifted Interpolation, K-Nearest Neighbors (KNN), and Linear Regression methods across multiple time frames - 6 hours, daily, weekly, and monthly. The performance of these methods is m… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.