Imputed quantile vector autoregressive model for multivariate spatial–temporal data
Liang Jinwen,
Tian Maozai
Abstract:Imputing missing values in multivariate spatial–temporal data is important in many fields. Existing low rank tensor learning methods are popular for handling this task but are sensitive to high level of skewness. The aim of this paper is to develop an alternative method with robustness and high imputation accuracy for multivariate spatial–temporal data. In view of the fact that quantile regression is robust to noises and outliers, we propose an imputed quantile vector autoregressive (IQVAR) model. IQVAR can si… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.