Surfaces that have been intricately functionalized with reactive polymers have attracted scientific attention recently because of their potential use in a broad range of applications. Polymers containing chemically reactive functional groups can be utilized for subsequent modification of various surfaces. Reactive polymeric surfaces can be produced by surface-initiated polymerization, such as atom transfer radical polymerization, nitroxide-mediated polymerization, and ring-opening metathesis polymerization. Such surfaces can subsequently undergo postpolymerization modification to alter their physicochemical properties. Postpolymerization modification has a number of advantages, including the fact that diverse polymer structures are rapidly accessible without individual synthesis; polymerization of new functional monomers can produce a variety of surfaces and interfaces; and other materials can be easily modified, which would be difficult using conventional direct polymerization. In addition, the libraries of chemical reactions and materials that can be used in post-polymerization modifications are abundant. Therefore, post-polymerization modification opens up new platforms for the facile and versatile modification of various surfaces. This chapter focuses on a discussion of post-polymerization modification of various surface-bound polymers, from planar surfaces to three-dimensional objects, and on the extended applications of the reactive surfaces.