Since the advent of rare-earth permanent magnet (PM) materials, PM synchronous machines (PMSMs) have become popular in power generation, industrial drives, and e-mobility. However, rare-earth PMs in PMSMs are prone to temperature- and operation-related irreversible demagnetization. Additionally, faults can endanger components like inverters, batteries, and mechanical structures. Designing a fault-tolerant machine requires considering these risks during the PMSM design phase. Traditional transient finite element analysis is time-consuming, but fast analytical simulation methods provide viable alternatives. This paper evaluates methods for analyzing dynamic three-phase short-circuit (3PSC) events in PMSMs. Experimental measurements on a PMSM prototype serve as benchmarks. The results show that accounting for machine saturation reduces discrepancies between measured and predicted outcomes by 20%. While spatial harmonic content and sub-transient reactance can be neglected in some cases, caution is required in other scenarios. Eddy currents in larger machines significantly impact 3PSC dynamics. This work provides a quick assessment based on general machine parameters, improving fault-tolerant PMSM design.