In-game soccer outcome prediction with offline reinforcement learning
Pegah Rahimian,
Balazs Mark Mihalyi,
Laszlo Toka
Abstract:Predicting outcomes in soccer is crucial for various stakeholders, including teams, leagues, bettors, the betting industry, media, and fans. With advancements in computer vision, player tracking data has become abundant, leading to the development of sophisticated soccer analytics models. However, existing models often rely solely on spatiotemporal features derived from player tracking data, which may not fully capture the complexities of in-game dynamics. In this paper, we present an end-to-end system that l… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.